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1 Abstract

Despite the overwhelming social and societal impact of the internet, there is
little consensus on the theoretical models that best describe it. In this paper, we
propose a novel hybrid model that combines the characteristics of the Barabasi-
Albert (BA) model and the strong assortative stochastic block model (SBM)
to generate complex networks with both clustering and scale-free properties.
Our model aims to strike a balance between the assumptions of the two models,
leveraging interactive growth, preferential attachment, preexisting clustering
structure, and higher probabilities of forming edges within clusters.

We present an iterative algorithm where nodes are added to the graph one
by one. Each new node is assigned to a cluster based on the size of the clusters,
and connections are formed within the assigned cluster and to nodes outside
the cluster. The model incorporates parameters that control the probabilities
of forming intra-cluster and inter-cluster connections.

We simulate this model and compare it with real world network data to
evaluate how well it captures properties such as expansion and clustering.

Through analysis and simulations, we demonstrate several key properties of
our hybrid model. We observe that the growth of clusters is linear, expanding
in proportion to the number of iterations. The number of clusters increases
according to a harmonic series, reflecting the tendency for new clusters to be-
come less likely as the network grows. Furthermore, we investigate the degree
distribution of our model and find that it exhibits a scale-free behavior similar
to the BA model. The in-cluster and out-cluster degrees follow power-law dis-
tributions, with exponents derived from differential equations governing their
growth rates.

Our findings contribute to a deeper understanding of network generation
processes and offer insights for the design and analysis of real-world complex
systems such as the internet.
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2 Introduction

The internet has changed the way people engage with each other, access infor-
mation, and almost every way that people interact with the world around them.
There is a strong argument to be made that the internet is one of the most im-
portant networks that can be found in modern society. Despite the vast amount
of literature that exists on mapping the topology of the internet, there is hardly
any agreement on what it looks like or what models work best to describe it.
Yet, understanding the internet and its routing behavior is critical for evaluat-
ing the behavior and performance of routing protocols, developing new designs
for resource provisioning, and securing the internet as a critical infrastructure
[6, 8]. Mapping out the internet turns out to be an incredibly challenging feat
[8]. It is no wonder that there is no consensus on what the internet topology
looks like and what models can be used to best analyze it. Understanding why
requires a little more information on the underlying infrastructure that makes
up the Internet.

At its simplest, the internet contains a large number of routers that forward
traffic between end hosts. The routers use distributed algorithms to discover
routes between systems to forward data. In reality, sets of routers are parti-
tioned into groups owned by a single entity called an Autonomous System (AS).
Within an AS, internal routing is done using those distributed protocols (such
as OSPF), however a different protocol is needed to route data between Au-
tonomous Systems. This is the role of the Border Gateway Protocol (BGP). To
view the internet as a graph, Autonomous Systems can be abstracted away as
nodes, and edges are the BGP peering connections between neighboring ASes
[4]. The use of a dynamic routing protocol to connect the parts of the internet
makes for an incredibly complex and every-changing topology.

2.1 Prior Work

[4] uses servers that collect BGP data from ASes to map out peering relation-
ships between Autonomous Systems. This method of viewing BGP updates
from ISPs and ASes is the most popular approach we’ve seen for mapping the
internet topology. The largest project of this type is Oregon Route Views, which
collected billions of BGP announcements that can be used to re-construct net-
work topology [9].

With so much BGP data being recorded every day (over a billion route
updates), it is hard to keep track of the data and what is useful. This is com-
pounded by the fact that a lot of it is redundant. MVP allows users to get less,
and more useful data out of BGP route updates [1]. The authors accomplish
this by grouping events into categories by similarity (how they change the to-
pography) and picking data from dissimilar categories. These two approaches
come from a rich set of literature that on collecting and analyzing BGP data to
understand internet connectivity.

Other projects attempt to define mathematical models that accurately rep-
resent the internet [10]. We talk extensively about these projects later in the
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paper. A brief summary is that they focus on the node degree distribution
in the internet, claiming that it follows a power law distribution: highly con-
nected nodes are more likely to get new connections and nodes are more likely
to connect with other nodes that have high node degree.

One of the key flaws in most work done to map out the internet is that
they use BGP data to build their graph [8]. BGP was not intended or designed
to measure the internet. In fact, one of the major design goals of BGP is to
hide information. It allows ASes to express routing policies without revealing
internal data such as customer and provider information. Notably, BGP data
lacks internet-wide state and routing information [8]. Traceroute and ping tools,
also widely used to map the internet, were similarly not designed for such as
purpose. Unfortunately, there are not many better ways to map the internet, so
the key insight is to be aware of where the data is coming from and what flaws
might exist in inferences made from said data.

2.2 Our Work

In this paper, we argue that solely focusing on node degree distribution is not
the right approach for modeling the internet AS level connectivity. There is a
large amount of literature that supports that the internet follows a powerlaw
distribution [10], yet this implies barely any information about the structure
of the network or how it operates. There are many networks that function
completely differently that have the same node degree distribution [6]. As a
counterpoint, it is possible to develop random graphs with any given degree
distribution that have no meaning whatsoever.

We argue that clustering characteristics are just as important to understand-
ing a network’s topology and behavior. Analyzing the topology of the internet
using clustering and expansion on top of node degree distribution gives a much
better view.

We analyze data gathered on real-world Autonomous System connectivity,
gathering metrics such as clustering coefficients, expansion, etc. We also analyze
multiple proposed graph models for the internet and apply the same metrics,
comparing them to real-world data.

3 Network Data

This section discusses the networkx graphs and data sets used in the analysis,
as well as how they fit into the models being considered. Various aspects of
the network structure, such as degree distribution, clustering coefficients, and
expansion, are examined to gain a better understanding of the properties of the
graph, using data from [11]
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Figure 1: Internet Usage Histogram

3.1 Degree Distribution

Upon analyzing the given graph from the latest BGP routing data, it is ob-
served that the model follows a power-law distribution. The inverse power-law
regression line accurately represents the trend of the data when plotted. A log-
likelihood ratio value of 201, which is greater than 0, indicates that the inverse
power-law distribution is more likely than the exponential distribution.

In Figure one, we plot the degree distribution. Note that on the y-axis we
have a logarithmic scale for the number of nodes, and on the x-axis we have
a logarithmic scale. Their linear relationship suggests the scale-free property -
with the MLE of the scale free exponent being equal to the slope of the above
line, which is roughly equal to -1.2.

3.2 Clustering Coefficients

The global clustering coefficient employed in this study is defined as the ratio of
the number of triangles in the graph to the total possible number of triangles,
as defined above:

T (G) =
3δ(G))

τ(G)

To compute the global clustering coefficient, in our graph, we calculate the
triangles and triplets directly using the networkx library. Given the relatively
small graph size of 6,000 nodes, this method is computationally feasible. The
resulting global clustering coefficient is approximately 0.71.

In this table, we see that the global clustering coefficient actually grows with
time, and does not seem to be approaching 0 - an important observation we will
take note of when analyzing the theoretical result of later models.
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Year Month Nodes Edges Clustering
2011 01 18292 37414 0.460
2011 12 19246 38486 0.405
2012 01 19263 38783 0.402
2012 12 20077 40753 0.421
2013 01 20037 40655 0.431
2013 12 22706 44462 0.412
2014 01 22633 44253 0.400
2014 12 23990 47709 0.457
2015 01 23749 48788 0.551
2015 12 25215 51268 0.505
2016 01 25008 50434 0.505
2016 12 25283 50236 0.480
2017 01 25133 49715 0.456
2017 12 24934 51009 0.532
2018 01 27770 57298 0.532
2018 12 31144 61709 0.503
2019 02 31484 62582 0.510
2019 12 32261 66266 0.548
2020 01 34574 72439 0.578
2020 03 33947 71177 0.581
2020 05 34577 74290 0.609

Table 1: Table of clustering coefficients over time

Another metric we considered was edge expansion, defined as:

Φ(G) = min
S⊆V
S ̸=∅

|δ(S)|
|S|

where δ(S) is the set of edges with one endpoint in S and the other in V \ S.
We note here that expansion is NP-hard to calculate exactly, and approximating
it using Cheeger’s inequality on the entirety of the graph is still too computa-
tionally expensive to calculate. However, we note that when approximated by
sampling, we find values < 1e−2, suggesting a near 0 expansion for the whole
graph.

4 BA Model and Analysis

4.1 BA model and assumptions

The BA model was designed to model social networks, the world wide web, and
biological networks that exhibit the scale-free property, taking into account the
following assumptions:
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1. Growth: The network grows over time by adding new nodes.

2. Preferential attachment: New nodes are more likely to attach to existing
nodes that have a high degree (i.e., many connections) in the network.

3. Scale-free network: The resulting network has a power-law distribution of
node degrees, meaning that there are a few highly connected nodes (hubs)
and many poorly connected nodes.

The model incorporates these assumptions through the following algo-
rithm

(a) Initialize the graph G0 nodes.

(b) Add a new node to the network.

(c) Connect the new node to m existing nodes, where the probability of
connecting to a node i is proportional to its degree ki in the network,
such that P (i) = ki/

∑
j kj .

(d) Repeat steps 2-3 until the network has n nodes.

4.2 Degree distribution

An important tool that we will use later in this paper is the expected degree of
a node per iteration.

We can derive analytically the expected degree distribution of a BA model
given any initial parameters, as well as a variance on the random variable α, the
exponential in the BA distribution. For a given node, we have (from Network
Science by Barabasi) that the degree distribution of the graph (which will be
represented by P (k) ∼ k−3, where k is the degree of a node.

As a brief aside, if we wanted to find the expected degree of a given node
in a graph, instead of summing up all of the above over given t, we can instead
divide twice the number of edges by the number of nodes,

2(mt+ |E0|)
t+ |V0|

, where E0 is the set of all the initial edges and |V0| is the set of the initial
vertices.

Below, we analyze the clustering behavior of the BA model

4.3 Global Clustering Coefficient for the BA model

We have used analytical techniques to estimate the expected value of the global
clustering coefficient for the BA model.

We use the global clustering coefficient as defined in [5] as

T (G) =
3δ(G))

τ(G)
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Where

τ(G) : total number of triples after t steps (1)

δ(G) : total number of triangles after t steps (2)

We use the technique outlined in Network Science [2], where we derive a
temporal differential equation based on the unit change in the metric - in this
case the global clustering coefficient.

In our approach, we find expected values for the numerator and denominator
separately, and argue that their quotient should be asymptotically close to the
expected value of the true expected global clustering coefficient. The argument
is summarized below and the full derivation is in the appendix. Using a differ-
ential equation approach, we model the expected change in the global clustering

coefficient, T (t) = 3δ(t)
τ(t) , as new nodes and edges are added to the network.

4.3.1 Evaluating the expected number of triples

We derive the time-dependent function for the expected number of triples,
E[τ(t)]. In the limit as t → ∞, we find that the expected number of triples
grows linearly: E[τ(t)] ≈ (

(
m
2

)
+ 2m2)t.

4.3.2 Evaluating the expected number of triangles

Similarly, we derive the time-dependent function for the expected number of
triangles, E[δ(t)]. In the limit as t → ∞ with small initial values, we find that
the expected number of triangles grows logarithmically: E[δ(t)] ≈

(
m
2

)
(A +

B) ln |t|, where A and B are constants dependent on the initial graph.

4.3.3 Approximating the expected global clustering coefficient

Dividing the expected number of triangles by the expected number of triples,
we find that the growth of the global clustering coefficient is asymptotic of the

order ln(t)
t , which approaches 0 as t → ∞.

A full derivation for the above is included in the appendix, as well as an
exact formula for the expectations of E(τ(t)) and E(δ(t))

5 SBM and analysis

Unlike the BA model, the Stochastic Block Model does not use growth - instead,
it starts with a fixed number of nodes, and generates edges probablistically, and
independently, depending on a preassigned group assignment of each node.
.

More formally, we define a k×k matrix P = [pij ] where pij is the probability
of an edge between a vertex in block Ci and a vertex in block Vj . The generation
process of the edges is then as follows:
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1. For each pair of vertices i and j such that i ∈ Ca and j ∈ Cb:

2. Generate an edge between i and j with probability pab, independently of
all other edges.

We will be examining a version of the Stochastic Block model called the
strongly assortative model. In this case, we strongly preference the probability
that an arbitrary edge forms within any group is higher than the probability that
an arbitrary edge forms between nodes among different groups. Quanlitatively,
this will result in:

Pii >> Pij∀i, j

5.1 Degree Distribution

We will prove that the degree distribution of the SBM is not scale free, and
more precisely, that it follows a Poisson distribution. Firstly,

Given 2 independent Poisson random variables, X and Y, where

X ∼ π(a) and Y ∼ π(b)

, where π(λ) indicates a Poisson distribution

X + Y ∼ π(a+ b)

The degree distribution of a node in a given cluster of a strongly assortative
Stochastic Block Model (SBM) follows a Poisson distribution.

Consider a strongly assortative SBM with n nodes partitioned into k clusters
C1, C2, ..., Ck. Let ni denote the number of nodes in cluster Ci and pij be the
probability of an edge between a node in cluster Ci and a node in cluster Cj .

Consider a node v in cluster i. The degree of this node can be written as the
sum of indicator random variables representing potential edges to other nodes.
We can partition these edges into groups based on the clusters that the other
nodes belong to.

For each cluster Cj , define Xij as the sum of indicator random variables cor-
responding to potential edges between v and each node in cluster Cj . Each Xij

is a sum of nj independent Bernoulli random variables with success probability
pij , and therefore Xij follows a Poisson distribution with parameter λij = njpij
by the Law of Rare Events.

The degree of the node v is then D =
∑k

j=1 Xij , the sum of independent
Poisson random variables. Therefore, by the above statement about Poisson
distributions, the degree distribution of a node in a given cluster of a SBM fol-
lows a Poisson distribution with parameter λi =

∑k
j=1 λij .

We then can say the following:
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The degree distribution of the entire Stochastic Block Model (SBM) follows a
Poisson distribution. Furthermore, if λi is the parameter for the Poisson distri-
bution of cluster i and ni is the number of nodes in cluster i, then the parameter
Λ for the Poisson distribution of the entire SBM is given by Λ =

∑k
i=1

ni

n λi,

where n =
∑k

i=1 ni is the total number of nodes.

In an SBM, the degree distribution of the entire model is the weighted av-
erage of the degree distributions of each of the clusters, with the weights being
the proportions of nodes in each cluster.

By Theorem 1, we know that the degree distribution of a node in a given
cluster follows a Poisson distribution. Hence, the average of these Poisson dis-
tributions will also follow a Poisson distribution, due to the properties of the
Poisson distribution and the law of total probability.

Therefore, the degree distribution of the entire SBM follows a Poisson dis-
tribution with parameter Λ =

∑k
i=1

ni

n λi.

5.2 Triples and the Global Clustering Coefficient

Unlike the BA model, we will show that the clustering coefficient of the SBM
does not approach 0 with larger graphs, and instead can be bounded below.

Using our result from above, let the degree distribution of our SBM graph
G be the Poisson distribution with Poisson parameter Λ. Consider that for a
random node v, the number of triples with v as a center is(

deg(v)

2

)
=

deg(v)(deg(v)− 1)

2

Therefore we can say

E[τ(V )] =
1

2
E[deg(v)2]− 1

2
E[deg(v)]

Now, we can utilize that

V ar(deg(v)) = E[deg(v)2]− E[deg(v)]2

Since deg(v) follows a Poisson distribution with parameter Λ

Λ = E[deg(v)2]− Λ2

Λ + Λ2 = Λ(Λ− 1) = E[deg(v)2]

Therefore, we have

E[τ(v)] =
1

2
(Λ2 + Λ) +

1

2
Λ

.
Now, we make the following observations. Let

P = min∀i(Pii|Pii > 0)
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and let
Q = min∀i,j(Pij |Pij > 0)

.
Firstly, note that given any triple exists, we can bound the probability that

is is a triangle below by the constant Q, which means for larger graphs, the
global clustering efficient T ≥ Q.

However, this is a very weak bound, and if we utilize the assumption that
Pij << Pkk for all i, j, and k, we realize that the most common type of triples
will be those among large groups, and therefore, we can qualitatively note that
P will serve as a better approximator for the global clustering coefficient.

5.3 Expansions

Consider that for strongly assortative SBMs, we can consider sets S to be the
individual clusters. (We know if there are more than 1 clusters, we have that
atleast one of the clusters are less than half of the size of the total graph). Recall
that expansion is defined as

h(G) = min
S⊆V,|S|≤|V |/2

|E(S, S̄)|
min(|E(S)|, |E(S̄)|)

In this model, since R << P , a majority of edges for any given node are
within its own cluster. When we cut through a set S that contains an entire clus-
ter, we mainly cut through the relatively fewer inter-cluster edges, which occur
with probability R. Thus, the number of cut edges, |E(S, S̄)|, is proportional
to R times the number of nodes in the in the cluster.

On the other hand, the number of edges within the set, |E(S)|, is propor-
tional to P times the number of nodes in the cluster. Therefore, we can bound
the expansion from above by a value of the order to R/P .

6 Custom Model

To accommodate the assumptions of both of these models, we attempt to bal-
ance the assumptions that lead to the rise of the beneficial properties within
each model. Let’s list the assumptions necessary for the behavior the data agrees
within our model:

1. BA model

(a) Interactive Growth

(b) Preferential Attachment

2. Strong Assortative Stochastic Block Model

(a) Preexisting clustering structure
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(b) Edges within a cluster have higher probability of forming compared
to edges outside of a cluster

We implement the following algorithm: Start with an initial graph, G =
G(E0, V0). We will add a new node each iteration (until a desired number of
added nodes, T, is reached). Our model will take in 3 parameters, 0 ≤ δ1 <<
δ0 ≤ 1 and ϵ - which will be explained later. Each time we add a new node, the
following will be done:

1. First, assign the node v to cluster Ci with probability

|Ci|∑k
j=0 |Cj |+ ϵ

2. Once the node has been assigned to a cluster, Ci, it connects with another
node in its cluster, v0 with probability δ0deg(v0)/(deg(Ci))

3. The probability that it connects to another node, v1 in a different cluster

is probability δ1
outdeg(v1)

|E| , where —E— is the total number of edges in the

graph, and outdeg(v1) is the proportion of edges that leave the cluster.

6.1 Group size distribution

First, let’s note the growth of groups over time. Firstly, consider a group Ci.
We will show that each of these groups grows linearly Let |Ci| be the size of a
group. We use differentials to model the continuous expectation of the size of a
group as new nodes are added.

∂|Ci|
∂t

=
|Ci|

t+ |V0|+ ϵ

ln(|Ci|) = ln|t+ |V0|+ ϵ|+ C

Ci = C(t+ |V0|+ ϵ)

We see from solving this differential equation that each group grows linearly,
in proportion to t.

Let’s also note that because of the parameter ϵ in the denominator, we have
that a node v is not added to any group with probability ϵ/t+ |V0|. We see here
that the expected number of groups can be written as

k = k0 +H(t+ |V0|)−H(|V0|)

This grows like the harmonic series - another factor expressed in our model that
reflects the assumption that New AS clusters can occur but tend to become less
likely as more and larger clusters are already present in the system.
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6.2 Degree Distrubtion

We will show that this model wields a close relative scale-free property.
First, let’s write the appropriate differential equation corresponding to the

growth rate of the in-cluster node k in group CI . We will assume the graph has
already gone through many iterations, and we can therefore remove the + |E0|
from our calculations.

∂ki
∂t

=
|Ci|

|E|+ ϵ
δ0

ki∑
kj ∈ Ci

Since each cluster grows linearly, and each time a new node is added to the
cluster, it add an expected value of δ0 edges, increasing the total degree of the
cluster by 2δ0 on each time a new node is added to that cluster.

Now consider that then this differential becomes

∂ki
∂t

=
|Ci|

|E|+ ϵ
δ0

ki

2δ0
|Ci|
|E|+ϵ t

∂ki
∂t

=
k

2t

We have that this differential is exactly that of the BA model where m = 1 - as
is expected, since in the special case of isolated groups, we simply have a single
BA model. We thereby observe that the degree distribution that is proportinal
to k−3

Now, lets measure the change in the out degree of a node.

∂ko
∂t

= (1− |Ci|
|E|+ ϵ

)δ1
ko

2δ1(1− |Ci|
|E|+ϵ )t

∂ko
∂t

=
k

2t

Now, we see a similar construction to above, where the out degree of the
node, and can again make some cancellations. Again, per iteration, the expected
number of out nodes is δ1 per com

We can note that the total degree of a node, which we can write as ki + ko,
will be donimated by the ki term for larger clusters (which will form the majority
of our model), so we can approximate our models degree distribution but.

6.3 Clustering behavior, Expansion, and conclusion.

In this model, our clustering coefficient remains low because of a ”ports and
hubs” structure - where ports are nodes with a high out-degree and nodes are
. Firstly, we will make the assumption that since δ1 is small, the number of
triples and triangles outside

We know that the global clustering coefficient grows like δ0
ln(t)
t , by the same

reasoning used in the appendix we used to derive the clustering coefficient of the
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BA model - just multiplied by the δ0 constant (since we are neglecting the small
count of cross-cluster triangles). We could counteract this by setting δ0 to be
an adaptive model, but doing so would complicate the differential equation in
the degree distribution section to a non-homogenous differential equation (and
the order could depend on the function chosen to represent δ0).

However, we can conclude that the expansion of this graph is very close to
0, because again of the assumption that δ1 << δ0, as we can use the same
reasoning we did in the SBM - as the expected number of edges out of a cluster
grows linearly with time, and the expected number of edges in a cluster grows
linearly with time, we have an expansion bounded above by a constant of the
order δ0/δ1

6.4 Conclusion

While this model doesn’t have the exact properties of either the SBM or the BA
model, it serves as a healthy medium to maintain a clustered structure while
still maintaining the scale-free law. As a philosophical note, this model leads to
the generation of ”ports” and ”hubs”, where a port within is a node with high
out degree of a cluster, and a hub is a node with high in degree in a cluster. A
high δ0 can be used manually to raise the global clustering coefficient.

Going forward, we realize this model is not perfect. Like the Holmes-Kim
model, while our expected global clustering still approaches in 0 in time, our
hyperparameters offer tweaks to skew this constant upward. An adaptive δ0
would lead to a non-zero - but would also lead to much more complex behavior
regarding degree distributions as it would no longer be a first-order homogeneous
differential equation, as delta itself would change in time - and solving such is
beyond the scope of this paper - but we are excited to explore it in the future.
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A Full derivation of BA model global clustering
metrics

A.1 Degree distribution

A.1.1 Analyzing expected degree for a given node

An important tool that we will use later in this paper is the expected degree of
a node per iteration.

We can derive analytically the expected degree distribution of a BA model
given any initial parameters, as well as a variance on the random variable α, the
exponential in the BA distribution. For a given node, we have (from Network
Science by Barabasi) that the degree distribution of the graph (which will be
represented by P (k) ∼ k−3, where k is the degree of a node.

As a brief aside, if we wanted to find the expected degree of a given node
in a graph, instead of summing up all of the above over given t, we can instead
divide twice the number of edges by the number of nodes,

2(mt+ |E0|)
t+ |V0|

, where E0 is the set of all the initial edges and |V0| is the set of the initial
vertices.

A.2 Expected Clustering Coeffficients and Distributions

We can also analytically derive the expectations for the global clustering coeffi-
cient and the distribution and expected values of the local clustering coefficient
for the BA model. We will start with the global clustering coefficient - and will
derive an expression for this using a differential equation to model the expected
change.

A.2.1 Global Clustering Coefficient for the BA model

Variables and Definitions Before we start, let’s define some variables:

t : number of iterations (time steps)

t0 : initial number of nodes in the graph

N : total number of nodes in the graph after t iterations (N = t+ t0)

m : number of edges added to the graph with each new node

pi : probability of connecting to node i, which is proportional to its degree ki(pi =
ki∑N
j=1 kj

)

τ(t) : total number of triples after t steps

δ(t) : total number of triangles after t steps

Ei : the set of edges in the graph after i iterations

Vi : the set of nodes in the graph after i iterations
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Recall that the global clustering coefficient

T (G) =
3δ(G))

τ(G)

Using our notation above, we rewrite this as

T (t) =
3δ(t))

τ(t)

Now, let δ(t) be the expected number of triangles in the graph after t iter-
ations. We’re interested in finding the differential equation that describes the
change in δ(t) as new nodes and edges are added. To model the change in this
fraction find time dependent functions for our numerator and denominator. In
both of our cases, we will follow a similar approach to section 5.4 of Network
Science for deriving the expected degree distribution of the BA model.

Evaluating the expected number of triples First, lets evaluate the E(τ(t)).
Let ∆τ(t) be the number of new triples added on the t’th node. We can write
that

τ(t) = τ(t− 1) + ∆τ(t)

Likewise, using expectation to go from discreet random variable to a continuous
variable,

E[τ(t)] = E[τ(t− 1)] + E[∆τ(t)]

Now, we can take derivatives with respect to t on both sides to create a model
on how our number of triplets can change over time. However, when we take
derivatives, realize that E[τ(t− 1)] is a constant given the iteration, so we get

∂E[τ(t)]

∂t
=

∂E[∆τ(t)]

∂t

So we need only analyze the expectation of ∆τ(t) - the number of triangles
that are created with the new node - which intuitively makes sense as these
define the number of triples added per time, or more closely define a rate. We
can split the new triples added into.

Before we go on, we should define the center of a triple

τ = {{v1, v2, v3} ∈ V, {(v1, v2)(v3, v2)} ∈ E}

where V is the set of all nodes and E is the set of all edges in a graph G - to be
v2, the node that connects to the other 2 nodes in the triple.

Now, consider that there are two types of triples, those that have vt as their
center, which we will say are captured by the function ∆τvt(t) and those that
do not, which will be captured by the function ∆τ̸vt(t)

E[∆τ(t)] = E[∆τvt(t)] + E[∆τ̸vt(t)]
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Therefore we can rewrite our differential as

∂E[∆τ(t)]

∂t
=

∂E[∆τvt(t)]

∂t
+

∂E[∆τ̸vt(t)

∂t
]

Now, let the new node being added be called vt. . The first type is simple
to calculate, there are m new edges added each iteration, and if any 2 form a
triple, we have

(
m
2

)
new triples. So:

∂E[∆τvt(t)]

∂t
=

(
m

2

)
As for E[∆τ̸vt(t)], consider that every time an edge is added from vt to any

other node, let’s call it vt′ , then deg (vt′) triples are formed, as vt′ is the center
for a triple with one edge connecting to vt. Consider combining this idea with
linearity (we connect n new edges each time):

∂E[∆τ̸vt(t)]

∂t
= E[

m∑
1

deg(v ∈ Vt−1)] = mE[deg(v ∈ Vt−1)]

However, we’ve already calculated

E[deg(v ∈ Vt−1)]

to be
2(mt+ |E0|)

t+ |V0|
So therefore we have that

∂E[∆τ ̸vt(t)]

∂t
= 2m

(mt+ |E0|)
t+ |V0|

Wrapping it all up, we therefore have

∂E[τ(t)]

∂t
=

(
m

2

)
+ 2m

(mt+ |E0|)
t+ |V0|

Now, we can integrate to yield an exact solution:

E[τ(t)] =

(
m

2

)
t+ 2m · ((|E0| − |V0|m) ln (t+ |V0|) +mt) + τ(G0)

However in the limit as t → ∞, we get our differential approahces

∂E[τ(t)]

∂t
=

(
m

2

)
+ 2m

(mt)

t
=

(
m

2

)
+ 2m2

And get an asymptotically linear growth function

E[τ(t)] = (

(
m

2

)
+ 2m2)t
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Evaluating the expected number of triangles In the numerator, we have
that

When a new node (n) is added at time t, it will form a triangle if it connects
to two nodes that are already connected. Let’s define the expected number of
triangles formed by the new node (n) as ∆δT(t). By the same reasoning as
above we have

E[∂δ(t)]

∂t
=

E[∂∆δ(t)]

∂t

Now consider again that a new triangle is formed when a new node connects
to 2 edges that are already connected. Since the new node vi connects to m
new nodes, it can form

(
m
2

)
seperate pairs of nodes.

Now, Xij be the independent variable representing 1 if nodes i and j are
connected by an edge and 0 otherwise. We aim to find E[Xi,j |i, j < t], since all
the previous nodes we’re added before t. However, this is simple. We have a
total of

m(t− 1) + |E0|

distinct edges in a graph, each connecting a distinct pair of nodes, and(
t− 1 + |V0|

2

)
distinct pairs of nodes in the graph. Therefore, we have that

E[Xij ] =
m(t− 1) + |E0|(

t−1+|V0|
2

)
Therefore, by linearity, we have that per time increment, we can represent

the expected change in triangles as

∂E[∆δ(t)]

∂t
=

(
m

2

)
E[Xij ] =

(
m

2

)
m(t− 1) + |E0|(

t−1+|V0|
2

)
Integrating the above expression using partial fraction decomposition, we get

E[δ(t)] =

∫ (
m

2

)
m(t− 1) + |E0|(

t−1+|V0|
2

) dt =

(
m

2

)
[A ln |t+ |V0| − 2|+B ln |t+ |V0| − 3|]+δ(t0)

Where

A =

(
m
2

)
(|V0| − 1)(m(|V0| − 2) + |E0|)

(2|V0| − 5)(|V0| − 2)

B =

(
m
2

)
(|V0| − 1)(m(|V0| − 2) + |E0|)

(2|V0| − 5)(|V0| − 1)

If we wanted to simplify the above expressions at t → ∞, small |V0|, and
small |E0|:, we can simplify to get below:
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For small |V0|, the terms inside the absolute value of the logarithms will be
dominated by t. So, we can approximate the logarithms as follows:

ln |t+ |V0| − 2| ≈ ln |t|

ln |t+ |V0| − 3| ≈ ln |t|

Now the expression becomes:(
m

2

)
[A ln |t|+B ln |t|] + δ(t0)

Combine the terms inside the parentheses:(
m

2

)
[(A+B) ln |t|] + δ(t0)

In the limit t → ∞, the Dirac delta function term, δ(t0), will become irrele-
vant, and we are left with: (

m

2

)
[(A+B) ln |t|]

The sum of A and B can be computed as follows:

A+B =

(
m
2

)
(|V0| − 1)(m(|V0| − 2) + |E0|)

(2|V0| − 5)(|V0| − 2)
+

(
m
2

)
(|V0| − 1)(m(|V0| − 2) + |E0|)

(2|V0| − 5)(|V0| − 1)

Since both terms have a common factor of(
m

2

)
(|V0| − 1)(m(|V0| − 2) + |E0|)

, we can rewrite the sum as:
So, the simplified expression in the limit t → ∞, with small |V0| and small

|E0|, is: (
m

2

)
[(A+B) ln |t|]

A note on approximating the expected global clustering coefficient
Dividing our expected values above, we get the horrifying expression:

3

(
m
2

)
[A ln |t+ |V0| − 2|+B ln |t+ |V0| − 3|] + δ(t0)(

m
2

)
t+ 2m · ((|E0| − |V0|m) ln (t+ |V0|) +mt) + τ(G0)

In the limit as t → ∞, this becomes

3
(
m
2

)
[(A+B) ln |t|]

(
(
m
2

)
+ 2m2)t
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Which implies that the growth of the global clustering coefficient is asymp-

totically of the order ln(t)
t which approaches 0 as we get to infinity.

Now, we’ve left out two major details in the above, which WE HAVE YET
TO GET TO. Consider that the numerator of this fraction, the number of trian-
gles, is the sum of a bunch of 0-1 random variables + a constant in expectation
(sum of whther or not two nodes are connnected), and the denominator of this
fraction can also be written as the sum Consider that our global clustering co-

efficient is defined as T (t) =
3δ(t)

τ(t)
Since the numerator and denominator of

this fraction are not conditionally neccesarily independent given t, by simply
dividing the expectations for the

Lastly, if it was only the limiting behavior, we could bound the denominator
by the τ(t) ≥ τvt(t), which reduces the deoninator to just m

2 t + τ(t0), and is
no longer a random variable since every term we are adding exactly

(
m
2

)
triples,

which means our clustering coefficient still approahces 0, as the denominator
can be bounded below by a linear function. Therefore, we can say

lim
t→∞

E(T (t)) ≤ lim
t→∞

E(3δ(t)) ∗ 1(
m
2

)
t
= 0
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