

Runtime Verification for P4 Networks

Benny Rubin
Cornell University
bcr57@cornell.edu

Sundararajan Renganathan
Stanford University

rsundar@stanford.edu

Nate Foster
Cornell University

jnfoster@cs.cornell.

Abstract
Software defined networking (SDN) has

changed the landscape for innovation and control in
campus and enterprise networks. While it has simplified
much when it comes to network management, SDN has
added new complexities and surface area for
misconfigurations, bugs, or even malicious behavior in a
network. However, we can leverage the programmability
of networks to provide end to end verification of packet
behavior. Tiny Packet Checkers (TPC) is an approach
that provides real time, runtime verification of every
packet in the data plane. Network properties are
compiled into monitors (or tiny packet checkers) that are
run at each switch in a packet’s path. The monitor
collects data from packets and the checker verifies that
no packet violates any properties. Errant packets are
stopped and sent to the control plane for further
analyses.
 TPC incurs modest overhead, stemming from
additional checker computations and packet header data,
when compiled to switch hardware. It is possible to
reduce this overhead by capturing network state in the
form of packet telemetry and only checking for property
violations at the end of a packet’s journey. We introduce
a class of properties that can be checked at the last hop,
either on a leaf switch or a smart NIC on the end-host.
This approach reduces strain on the network core
switches and allows for more compute-heavy hardware
to run the checker. We also provide a set of TPC
programs written using last-hop semantics and an
analyses of performance tradeoffs.

I. INTRODUCTION
In the past 2 decades, the way that networks are

configured and operated has been changing significantly.
Historically, these complex networks of switches,
routers, NAT and firewall middleboxes, and other
specialized hardware ran proprietary closed software
that undergo years of testing and standardization.

Additionally, they are configured using interfaces that
vary across vendors and products. This approach as
slowed innovation and led to unnecessary complexity
[3].

These days, we are seeing a paradigm shift
towards programmable networks, where a piece of
hardware can act as a switch, NAT device, router,
firewall, etc. depending on how they are configured. The
defining characteristic of these software defined
networks is the separation of the control plane from the
data plane. The control plane is responsible for deciding
how to handle network traffic, and the data plane is
responsible for forwarding the traffic based on
information it receives from the control plane [3].

SDN control protocols like OpenFlow don’t
provide the flexibility to deal with the increase of
complexity and protocols that appear in modern
networks. The development of P4, a domain specific
language for programming packet parsers, was a major
step forward in the design of programmable networks as
it allows for three major goals. It allows for
reconfiguring the way that switches process packets
once they are deployed by simply compiling a new
program to run on it. Network hardware is abstracted
away from specific network protocols. Finally, packet
processing functionality is completely separated from
the underlying hardware. These goals are achieved
through the P4 compiler and runtime environment [4].
The rest of this paper assumes mild familiarity with P4.

P4 paves the way for more innovation and
complexity in software defined networks. This
introduces a new set of challenges for verifying correct
functionality of programmable networks. A network can
experience incorrect behavior for any number of the
following reasons: a bug in the P4 program, incorrect
match-action rules installed into the data plane by a
controller, a misconfigured or faulty piece of hardware,
or malicious attacks. Often these bugs only manifest
themselves once a packet has gone through a specific
sequence of switches and tables.

Runtime verification is a technique that can
verify the runtime behavior of a system in real time. The
approach in this paper is called Tiny Packet Checkers
(TPC), which performs runtime verification in the data
plane. TPC has a domain specific language that
describes a set of runtime properties that we expect
packet in the network to satisfy and compiles them into
tiny packet checkers that run in the data plane along with
the P4 forwarding code. These properties are checked by
switches at line rate. Packets that do not satisfy these
properties can be alerted on and dropped. TPC programs
are compiled to P4 and linked with the P4 code running
on switches.

The work presented in this paper will reason
about the feasibility and tradeoffs of checking properties
on the last hop of a packet. This reduces the overhead of
checking during each hop of a packet’s journey yet
requires more telemetry data to be attached to each
packet. This approach has a number of benefits.

Typically, network hardware on the edge of the
core has more resources and support more complex
interfaces and functionality; by saving the checking
phase until the last hop, we allow for fewer requirements
and less overhead in the devices along the route.
Additionally, this approach may serve better for certain
networks, so by implementing a TPC compiler module
that can be configured to translate programs between
every hop checking and last hop checking, we add
flexibility to the TPC runtime verification system.

It is worthwhile to mention several degradations
that could be incurred. It is possible that last hop
checking reduces the accuracy of pinpointing where
failures occur along the path. This approach also loses
the benefit of immediately dropping packets that violate
the specified properties.
The contributions of this paper include:
1. We present a practical system and semantics for

checking properties at the last hop instead of hop by
hop

2. We introduce a class of properties that can safely be
checked at the end

3. We wrote a set of TPC programs that check
properties at the end, along with a discussion on the
tradeoffs of hop-by-hop and last hop property
checking

II. RELATED WORK
There has been extensive work in the area of

static analyses for programmable networks and P4
programs. P4Assert uses annotated assertions in P4
programs to verify a model using symbolic execution
[1]. This approach is able to quickly evaluate various p4

applications to verify correctness and uncover bugs. P4v
allows you to specify a control-plane interface that
specifies the proper behavior of a P4 program [6].

These classes of static verification tools while
helpful for catching bugs at compile time, cannot yet
catch every possible set of bugs and furthermore are
restricted to the level of the P4 program and cannot
detect errors in the compiler, switch hardware, or tables
filled in by the control plane at runtime. These static
verification approaches are complementary to TPC and
should be used alongside it for additional assurance.

Runtime verification, on the other hand, can
catch bugs, configuration mistakes, or malicious
behaviors that stem from a number of sources during the
execution of the P4 program on the network. However,
there has not been a lot of work in this area. The
following section will explain why TPC is novel
compared to the literature that exists on runtime
verification for SDN.

P4Consist uses probe packets with special tags
that collect telemetry data that are forwarded to
dedicated servers that compare expected network
behavior to the ground truth behavior from the probes.
[5] However, the tags are only added to the special probe
packets. Additionally, the verification happens offline,
meaning inconsistencies cannot be detected at line rate
as they occur. TPC checks for property violations on
every single packet and the check is done on switch,
rather than requiring a dedicated server. DBVal
implements assertions in P4 that can verify runtime
behavior in the dataplane, however it focuses network
behavior on the execution of a single switch, while TPC
can capture network-wide properties such as loops and
slicing [1]. Thus, TPC introduces novel concepts in the
area of runtime verification for programmable networks.

III. THE TPC LANGUAGE

Fig. 1. TPC program for end-to-end slicing

bit<32> slice;

for switch in path {
 init {
 if (%path_length == 1)
 slice = @switch_slice;
 }

 checker {
 if (slice != @switch_slice) {
 reject;
 }
 }
}

The following is a brief overview on the
semantics and syntax of the TPC language. Note, this
work was done by Sundararajan Renganathan, advised
by Nick McKeown at Stanford, in collaboration with
Nate Foster’s research group at Cornell. TPC programs
are compiled to P4 and linked with the P4 code that runs
on the programmable switches in a network alongside
the forwarding code. While TPC is still a specification
language, it is written as a program in a scripting
language. This style is more familiar to programmers
than typical logical specifications frameworks such as
Linear Temporal Logic. In addition to traditional types,
expressions, and statements in imperative programming
languages TPC has a few constructs that are specific to
the language.

It is easiest to understand TPC through an
example. A simple property to illustrate the
expressibility of TPC is end-to-end slicing. In network
slicing, each switch is assigned a slice and a packet may
only traverse switch’s allocated to the same slice. A
common use case of this is VLAN isolation.

Figure 1 is a TPC program that enforces slicing
at each hop. The first thing to note is that at the top level,
the program is written as a for loop that models the
packet’s journey through each switch. At the first hop,
the slice variable is set to the slice of the current switch.
At each subsequent hop, this value is checked against
the current slice of the switch. If any of them are not
equal, the packet is rejected. The slice variable is called
a checker variable, and has no annotation. This means
the data is carried with the packet for verification. P4 has
the ability to add in-band telemetry data to packets,
which is one of the SDN features crucial for TPC and
last hop checking.

Forwarding variables are prepended with a %,
such as %path_length, and correspond to the headers of
the packet and metadata of the P4 program. Finally,
static variables correspond to configuration data and
information that is managed by the control plane, such
as @switch_slice. As evident, they are written with an
@ symbol. There is another type of variable called
sensor data that is collected and aggregated by the
switches, but is not useful for last hop checking.

The init block is run at the start of the ingress
pipeline, when the packet is first read in at the switch.
The checker block is then run at the end of the egress
pipeline, when the packet is about to be sent out. This
allows them to capture different state, before the
forwarding program is run on the switch. There is also
an optional sensor{} block that can be used to keep track
of state at a switch to be used over a flow of multiple

packets, however it is not important for the discussion in
this paper.

Fig. 2. Model of TPC as a Runtime Monitor

IV. TRACES AND PREDICATES
While TPC has a domain specific language for

easily encoding properties, at the highest level of
abstraction it is a runtime monitoring system that
collects traces on packets, comprised of network state as
it traverses the network, and a predicate that runs on a
trace and either halts the packet or allows it to be
forwarded to the end host.

In classical software runtime verification a
runtime monitor is instrumented into a software system
to observe the behavior and determine whether or not it
violates a correctness specification [9]. More recent
work on runtime monitoring for other application
domains defines a useful abstraction for thinking about a
runtime monitor. The monitor is instrumented into the
system in such a way that it collects traces of the runtime
execution. These traces can capture state at certain
points, checkpoints, or often interactions with outside
systems. In offline runtime verification, the entire trace
is passed into a checker that verifies that certain
predicates hold. In an online system, the predicates are
run as the trace is collected. These predicates correspond
to properties that the system administrator want to
verify. This approach has been used in distributed
systems, security applications, and even in hardware [8].

To view the network verification problem as a
classical runtime verification scheme, it is helpful to
think of a network as one big switch. Packets enter the
switch from a source end host and then are routed to
their destination host. The details of the network are not
important in this model. As can be seen in the model in
figure 3, there is a monitor around the network that
captures the state as packets traverse the network. This is
analogous to how a runtime verification system would
be instrumented to see the trace of a program as it
executes. When the packet exits the network, before it is
forwarded to the end host, the monitor checks that the
trace passes a predicate. At the highest level, this is all
that TPC does.

The language was originally designed so that
properties are checked at each hop of a packet’s journey.
However, this runtime monitor abstraction does not
specify where a predicate is run on a trace, only that it is
either halted or allowed to continue before it reaches the
end host. It is possible to reason about properties that
could be checked only at the end of a packet’s journey,
either in the leaf switch or a smart NIC aboard the
endhost. Instead of checking the property at each switch,
the necessary telemetry data could be forwarded along
with the packet in the data plane and then it could be
checked before it reaches the end-host either at the leaf
switch or a smart NIC. By using the one big switch
model, it is easy to reason about last hop checking in the
same way as hop by hop checking – packets that violate
a property are not delivered to the destination and
instead are sent to the control plane. This is analogous to
an offline check for runtime verification, where hop by
hop can be seen as online.

The TPC abstraction only specifies the trace to
be collected and the predicate on the trace. Checking the
predicate hop by hop or at the edge does not affect the
property being checked. If you model the predicate as a
state machine, S that operates on a trace T. S either
enters a rejecting state and halts the packet or allows the
packet to continue to its destination. T contains a
sequence of state (t!, t", t#, . . . , t$) the packet picks up
as it traverses the network. In the edge check, thinking
of the network as one big switch, the state machine
would take in the trace once it has been fully collected
and either forward the packet to the end host or reject it.
By in-lining the check into the network, the state
machine, including the transition function, does not
change. The trace itself is also independent of where the
check occurs. The only difference is that the state
machine is distributed to different pieces of hardware
and the transitions occur as the trace state becomes
available, rather than at the end. Thus, these two
approaches are equivalent. Another way to think about
this is that one could have an offline verification system
or an online monitor for the same, equivalent correctness
specification.

Where the check happens is flexible and up to
the programmer. It is easy to visualize the check
happening at the edge, as the packet is leaving the
monitor, as in figure 3, however it can be in-lined into
the network and distributed to switches inside, as seen in
the program in figure 1. This has the advantage of
immediately dropping packets as soon as TPC knows it
will eventually be halted. There exists some total
compiler that can translate the same equivalent program
between edge checking and hop by hop checking by in-

lining the program into the network. This is considered
future work for this paper.

There is a class of properties that cannot be
checked at the edge. The only case is when the packet
does not reach the edge, as then the trace is lost, and the
predicate cannot be checked. Such examples are if a
packet is stuck in an infinite loop or if it is dropped in a
black hole. In this case, other tools can be run alongside
TPC (such as hop by hop checking for these violations),
to ensure packets make it to the edge.

Fig. 3. TPC program for last hop checking of slicing

V. CHECKING PROPERTY VIOLATIONS

A. Hop by Hop Checking
As seen in the example in fig. 1, the for loop

specifies that the initialization and checker block is run
at each switch. This allows for the switch to keep track
of the state of the network in memory as packets are
forwarded through. Additionally, it means that if the
checker finds a packet that has violated a property, it can
immediately be dropped and sent to the control plane.
This is the main advantage of the hop-by-hop checking
approach. There are, however, a number of limitations.
Due to the fixed number of pipeline stages in popular
programmable switches, the entire TPC program might
not fit on all pieces of hardware. Additionally, the
network core often has little room for overhead and
more congestion. Compared to edge switches and smart
NICs, there is much less available compute.

bit<32> slice1;
bit<32> slice2;
bit<32> slice3;
bit<32> slice4;

for switch in path {
 init {
 if (%path_length == 1){
 slice1 = @switch_slice;
 }
 if (%path_length == 2){
 slice2 = @switch_slice;
 }
 if (%path_length == 3){
 slice3 = @switch_slice;
 }
 if (%path_length == 4){
 slice4 = @switch_slice;
 }
 }
 checker {
 if (last_hop) {
 if (slice1 & slice2 & slice3 & slice4 != slice1) {
 reject;
 }
 }
 }
}

B. Last Hop Checking
It is possible to reason about properties that

could be checked only at the end of a packet’s journey,
either in the leaf switch or a smart NIC aboard the end
host. Instead of checking the property at each switch, the
necessary telemetry data could be forwarded along with
the packet in the data plane and then it could be checked
before it reaches the end-host either at the leaf switch or
a smart NIC. By viewing the network core as one big
switch, it is easy to reason about last hop checking in the
same way as hop by hop checking – packets that violate
a property are not delivered to the destination and
instead of sent to the control plane. Additionally, some
core switches may not have certain functionality. There
could be restrictions on accessing stateful registers,
depending on the hardware, and limited resources for
adding new logic to the pipeline.
 This approach significantly reduces overhead on
network core switches and still acts as a runtime
verification system that can check every packet as it
traverses the network. It is semantically straightforward
to convert a TPC program for a property from hop-by-
hop checking to last hop checking. There are 2 necessary
pieces of information:

• Telemetry data to keep track of
• Predicate on the data to check for a violation
Each switch along the path will forward the

telemetry data and the final hop will do the checking. P4
allows for a number of fields to be collected as packet
telemetry. This includes packet headers, switch state
such as table content, registers, queue lengths, and parser
statistics. Any property that uses predicates on this data
can be expressed as a last hop TPC program. Figure 2 is
an example of a TPC program for last hop checking. For
simplicity, it assumes each path is 4 hops. With compiler
improvements, the trace would be modeled as a list and
the predicate would be verifying that all the elements are
the same (by the transitive property on the first element).

The main difference is that instead of doing the
check at each hop, the telemetry data is simply
forwarded with the packet and then the check happens
all at once at the end.

Unfortunately, TPC does not currently support
lists. We are working on compiler support for this
feature. Thus, the code is not very elegant, but it will be
greatly improved soon.

As shown in the example, right now the only way to
check for properties at the end is with a conditional in
the checker block. However, this still requires the
program to be compiled to every switch in the path. We
plan on optimizing this by only compiling the required

blocks to each switch, so only the leaf switches will
include the checker.

Below is a (non-exhaustive) list of properties that
can be expressed in TPC and have been implemented as
equivalent hop by hop and edge checking TPC
programs. Each of the entries contains a property name,
a description of the property, the trace to be collected,
and the predicate on the trace. The form is as follows:
v Property Name

Ø Description
Ø Telemetry Data
Ø Predicate on Data for Rejection

v Slicing

Ø Each packet only traverses through the same
slice

Ø The slice of each switch in the path
Ø Not all the slices are the same

v General loop
Ø No packet traverses the same switch twice
Ø Each switch in the path
Ø A switch is visited twice

v VLAN Isolation
Ø All packets traverse the same VLAN
Ø The VLAN of each switch
Ø Packet enters a different VLAN

v Leaf Spine Invariant
Ø First and Last hop of a packet’s path are leaf

switches
Ø The state of the first switch and last switch
Ø First switch or last switch is not a leaf switch

v Reachability
Ø host s is reachable from host t
Ø Reachability matrix from control plane and the

end host
Ø If host t is not reachable from the last hop

v Isolation
Ø Negation of Reachability

v Waypointing
Ø Packets sent from s can reach t, going through

switch w
Ø A Boolean value, whether the packet has gone

through switch w
Ø w is false

v Egress port validity
Ø Packets may only egress the network at allowed

ports
Ø Destination port of egress leaf switch and

allowed ports from control plane
Ø The destination port is not an allowed port

v Path length validation
Ø The length of the path is as expected

Ø The number of switches in the path
Ø The number of switches in the path is not the

same as the expected distance
v Path validation

Ø The path taken by a packet is as expected
Ø Each switch in the path
Ø The path is not the same as the expected path

VI. ENGINEERING TRADEOFFS
Besides the set of properties that cannot be

checked at the edge, the only differences between the two
approaches are practical engineering tradeoffs. By giving
network administrators the ability to choose how to
implement their properties, TPC remains flexible to
different network requirements.

One of the biggest advantages of edge checking is
that it allows for incremental deployment of TPC to
networks. P4 programmable switches are expensive and are
not commonly used in production networks. However, we
are seeing more and more switches adding the capability to
add in-band telemetry to packets. Checking at the edge
allows for switches that cannot be arbitrarily programmed,
yet can add telemetry to packets, to be verified by TPC.
When the packet reaches the edges, either a programmable
switch or more likely a smartNIC or even the end host
kernel, can perform the property violation check. This one
property of edge checking allows for a significantly higher
number of networks to support TPC. As networks migrate
towards deep programmability, it is important to add
incremental support to tool that leverage it.

Another point of tradeoff between the two
approaches is telemetry overhead. The amount of telemetry
overhead depends on the property. Certain properties, such
as maximum hop length, only require a single integer to be
carried along with the network. This integer can be thought
of as mutable state that each switch updates as the packet
traverses the network. However, other properties, such as
ones that are dependent on each switch in the path (e.g.
switch slice isolation), can require more telemetry. In this
case, the amount of telemetry scales with the diameter of
the network, as each switch adds 4 bytes to the list of
switch slices. This list can be thought of as an immutable
local variable that each switch appends data to. For this
property, checking hop by hop only requires 4 bytes total,
while checking at the edge requires 4 bytes per switch.
Often, especially if the computation is simple, it is better to
perform it on each switch rather than carrying significantly
more telemetry. However, it is convenient, when a switch
doesn’t support deep programmability, to be able to append
the data to the packet to be processed later.

The network core is highly congested, responsible
for forwarding all packets to their destination. Especially in
modern networks, a little bit of overhead can be the
difference between line rate forwarding and significantly

slower throughput. In fact, the P4 compiler will not even
allow you to install a program if it uses more pipeline space
than is available. Thus, to realistically support TPC, it is
important to have flexibility in where the computation
takes place. By moving the computation from the switches
in the core that highly congested and sensitive to small
overheads, to the switches or smartNICs at the edge that
have more available compute and often more capabilities
for programmability, edge checking is easier to support; in
some networks it might be the only option.

Finally, checking hop by hop has the benefit that
packets are halted as soon as it violates the property. If you
know a packet will eventually be dropped instead of
forwarded to its destination end host, it clearly reduces
strain on the network to drop it immediately rather than
allowing it to add to the congestion of the network and
must be processed at every subsequent switch. Edge
checking guarantees the same level of correctness, but the
packet will necessarily travel to the edge before it is
dropped.

Qualitatively, there are significant differences
between writing programs for the edge and hop by hop.
In our experience, it is easier to reason about the
behavior of a TPC program that specifies the telemetry
to add to a packet and a predicate on the telemetry. This
is especially the case when designing the language to
support list constructs and comprehensions on lists.
Additionally, this style of programming is more
conducive to the high level abstraction of viewing a TPC
program as a trace and a predicate on a trace. Thus, the
lists specify the trace (i.e. the state collected at each
switch) and the list comprehensions specify a predicate
on the trace. Meanwhile, it can be tricky to reason about
the behavior of a program that is running the check at
each hop, as the predicate is working on a partial trace
and is thus a “partial” check.

When designing the compiler, the edge check
has a full view of the trace, while the hop by hop
checker only performs “partial” checks on partial traces.
Thus, a program written in the edge check format (i.e.
specifying a trace and a predicate on the trace) could be
easily optimized to be compiled to different P4 programs
to be run only on the necessary switches, introducing the
least amount of overhead, while a hop by hop program
might have to be manually written separately for each
switch. This is because the hop by hop program
semantically specifies the behavior of a single switch on
the partial trace it has so far, rather than the entire trace
available at the edge.

The language design itself only serves to make it
easy for a programmer to share their intent with the
system and to make it easy for the system to compile the
program to the switches. It is important to note that

independently of the language design, the TPC program
should be able to run as a hop by hop check or as an
edge check. This qualitative experience only serves to
show that it appears easier to specify programs as edge
checks and to translate them to hop by hop programs as
needed than to specify programs as hop by hop programs
and translate them to edge checks.

VII. CONCLUSION
The emergence of software defined networking

enables innovation in ways that hasn’t been seen before,
but also comes with new surface area for vulnerabilities
and bugs in the P4 compiler, P4 programs, control plane,
and hardware. Tiny Packet Checkers is an approach that
leverages these new programmable networks to check
the correctness of every packet at runtime as it traverses
the network. In this paper, we have introduced a high
level abstraction for TPC that is independent of where
the check happens. We have also shown the equivalence
of checking at each hop and at the edge, along with
example properties and a discussion of the practical
engineering tradeoffs of each approach. Checking at the
edge enables incremental deployment and reduces strain
on the network core, but leads to higher telemetry
overheads and does not halt packets as soon as they
violate the correctness specification. Ultimately, the
ability to switch between different methods for checking
properties allows for flexibility in how operators run
TPC programs.

VIII. FUTURE WORK
There are numerous directions to go for future

research. Verification for programmable networks, and
even software define networking as a whole is an
emerging field that requires a lot of work before it
comes feasible or cost effective. The first direction for
future work is to make improvements to the compiler
and add language support for checking at the edge. The
most important feature is to add list support so that
traces can be modeled as lists, that can be arbitrarily
long, depending on how many hops.

Another nice feature would be a total compiler
that can translate between equivalent hop by hop and
edge checking programs. This would give flexibility to
operators on how they want to run TPC, depending on
what their network topology looks like and how much
support they have for P4 programmability. Together
with this is a compiler that can compile a program to
different switches, depending on the topology. This
would reduce the overhead on all switches, except for

the necessary ones. For example in waypointing, the
waypoint switch is the only one in the network that
really needs to add any state to the trace.

Finally, we are working on a testing framework
for TPC. This either requires a test network with
programmable switches, which is costly and difficult to
setup, or a simulation framework which is a project in
and of itself to deploy. For these reasons, there has not
been a full scale experiment or testing of the different
approaches to running TPC, however this is currently
being worked on. These results would allow us to
quantitatively compare the effectiveness of hop by hop
checking and edge checking with different properties
and network topologies.

REFERENCES
[1] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko,
Alberto Schaeffer-Filho, and Marinho Barcellos. Uncovering bugs in
p4 pro- grams with assertion-based verification. In Proceedings of the
Sympo- sium on SDN Research, SOSR ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[2] K Shiv Kumar, K Ranjitha, PS Prashanth, Mina Tahmasbi
Arashloo, U Venkanna, and Praveen Tammana. Dbval: Validating P4
data plane runtime behavior. 2021.

[3] Feamster, N., Rexford, J., Zegura, E.: The road to SDN: an
intellectual history of programmable networks. ACM SIGCOMM
Comput. Commun. Rev. 44(2), 87–98 (2014)

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J.
Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al.,
P4: programming protocol-independent packet processors. ACM
SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014)

[5] Apoorv Shukla, Seifeddine Fathalli, Thomas Zinner, Artur
Hecker, and Stefan Schmid. P4consist: Toward consistent p4 sdns.
IEEE Journal on Selected Areas in Communications, 38(7):1293–
1307, 2020.

[6] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif,
Jeongkeun Lee, Robert Soulé, Han Wang, Călin Caşcaval, Nick
McKeown, and Nate Foster. P4v: Practical veriication for
programmable data planes. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, page 490–503, New York, NY, USA, 2018.
Association for Computing Machinery.

[7] Ran Ben Basta, Sivaramakrishnan Ramanathan, Yuliang Li,
Gianni Antichi, Minian Yu, and Michael Mitzenmacher. 2020. PINT:
Probabilistic in-band network telemetry. In Proceedings of the ACM
SIGCOMM Conference. 662-680.

[8] Sánchez, C., Schneider, G., Ahrendt, W. et al. A survey of
challenges for runtime verification from advanced application domains
(beyond software). Form Methods Syst Des 54, 279–335 (2019)

[9] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna
Ingolfsdottir. A survey of runtime monitoring instrumentation
techniques. Electronic Proceedings in Theoretical Computer Science,
254:15-28, 09 2017

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer Com- munication Review 38, 2
(2008), 69–74.

[11] P. Bosshart et al., "Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN", Proc.
ACM SIGCOMM, pp. 99-110, 2013.

[12] George Varghese, Nuno Lopes, Nikolaj Bjorner, Andrey
Rybalchenko, NickMcKe-own, Dan Talayco. 2016. Automatically
verifying reachability and well-formedness in P4 Networks. Technical
Report.

[13] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, C.
Raiciu, Debugging P4 programs with Vera, in: Proceedings Of The

2018 Conference Of The ACM Special Interest Group On Data
Communication, 2018, pp. 518–532.

[14] Kodeswaran Suriya, Arashloo Mina Tahmasbi, Tammana
Praveen, and Rexford Jennifer. 2020. Tracking P4 program execution
in the data plane. In Proceedings of the Symposium on SDN Research.
Association for Computing Machinery, New York, NY, 117–122.

[15] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford,
and David Walker. 2016. Compiling Path Queries. In Proceedings of
the 13th Usenix Conference on Networked Systems Design and
Implementation. USENIX Association, 207--222.

[16] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick
Jayaraman, and George Varghese. 2015. Checking Beliefs in Dynamic
Networks. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA. 499–512.

[17] Xiang, Qiao et al. “Switch as a Verifier: Toward Scalable Data
Plane Checking via Distributed, On-Device Verification.” ArXiv
abs/2205.07808 (2022)

