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Abstract 
Software defined networking (SDN) has 

changed the landscape for innovation and control in 
campus and enterprise networks. While it has simplified 
much when it comes to network management, SDN has 
added new complexities and surface area for 
misconfigurations, bugs, or even malicious behavior in a 
network. However, we can leverage the programmability 
of networks to provide end to end verification of packet 
behavior. Tiny Packet Checkers (TPC) is an approach 
that provides real time, runtime verification of every 
packet in the data plane. Network properties are 
compiled into monitors (or tiny packet checkers) that are 
run at each switch in a packet’s path. The monitor 
collects data from packets and the checker verifies that 
no packet violates any properties. Errant packets are 
stopped and sent to the control plane for further 
analyses.  
 TPC incurs modest overhead, stemming from 
additional checker computations and packet header data, 
when compiled to switch hardware. It is possible to 
reduce this overhead by capturing network state in the 
form of packet telemetry and only checking for property 
violations at the end of a packet’s journey. We introduce 
a class of properties that can be checked at the last hop, 
either on a leaf switch or a smart NIC on the end-host. 
This approach reduces strain on the network core 
switches and allows for more compute-heavy hardware 
to run the checker. We also provide a set of TPC 
programs written using last-hop semantics and an 
analyses of performance tradeoffs.  

 

I. INTRODUCTION  
In the past 2 decades, the way that networks are 

configured and operated has been changing significantly. 
Historically, these complex networks of switches, 
routers, NAT and firewall middleboxes, and other 
specialized hardware ran proprietary closed software 
that undergo years of testing and standardization. 

Additionally, they are configured using interfaces that 
vary across vendors and products. This approach as 
slowed innovation and led to unnecessary complexity 
[3].  

These days, we are seeing a paradigm shift 
towards programmable networks, where a piece of 
hardware can act as a switch, NAT device, router, 
firewall, etc. depending on how they are configured. The 
defining characteristic of these software defined 
networks is the separation of the control plane from the 
data plane. The control plane is responsible for deciding 
how to handle network traffic, and the data plane is 
responsible for forwarding the traffic based on 
information it receives from the control plane [3]. 

SDN control protocols like OpenFlow don’t 
provide the flexibility to deal with the increase of 
complexity and protocols that appear in modern 
networks. The development of P4, a domain specific 
language for programming packet parsers, was a major 
step forward in the design of programmable networks as 
it allows for three major goals. It allows for 
reconfiguring the way that switches process packets 
once they are deployed by simply compiling a new 
program to run on it. Network hardware is abstracted 
away from specific network protocols. Finally, packet 
processing functionality is completely separated from 
the underlying hardware. These goals are achieved 
through the P4 compiler and runtime environment [4]. 
The rest of this paper assumes mild familiarity with P4.  

P4 paves the way for more innovation and 
complexity in software defined networks. This 
introduces a new set of challenges for verifying correct 
functionality of programmable networks. A network can 
experience incorrect behavior for any number of the 
following reasons: a bug in the P4 program, incorrect 
match-action rules installed into the data plane by a 
controller, a misconfigured or faulty piece of hardware, 
or malicious attacks. Often these bugs only manifest 
themselves once a packet has gone through a specific 
sequence of switches and tables.  



Runtime verification is a technique that can 
verify the runtime behavior of a system in real time. The 
approach in this paper is called Tiny Packet Checkers 
(TPC), which performs runtime verification in the data 
plane. TPC has a domain specific language that 
describes a set of runtime properties that we expect 
packet in the network to satisfy and compiles them into 
tiny packet checkers that run in the data plane along with 
the P4 forwarding code. These properties are checked by 
switches at line rate. Packets that do not satisfy these 
properties can be alerted on and dropped. TPC programs 
are compiled to P4 and linked with the P4 code running 
on switches.  

The work presented in this paper will reason 
about the feasibility and tradeoffs of checking properties 
on the last hop of a packet. This reduces the overhead of 
checking during each hop of a packet’s journey yet 
requires more telemetry data to be attached to each 
packet. This approach has a number of benefits.  

Typically, network hardware on the edge of the 
core has more resources and support more complex 
interfaces and functionality; by saving the checking 
phase until the last hop, we allow for fewer requirements 
and less overhead in the devices along the route. 
Additionally, this approach may serve better for certain 
networks, so by implementing a TPC compiler module 
that can be configured to translate programs between 
every hop checking and last hop checking, we add 
flexibility to the TPC runtime verification system. 

It is worthwhile to mention several degradations 
that could be incurred. It is possible that last hop 
checking reduces the accuracy of pinpointing where 
failures occur along the path. This approach also loses 
the benefit of immediately dropping packets that violate 
the specified properties.  
The contributions of this paper include: 
1. We present a practical system and semantics for 

checking properties at the last hop instead of hop by 
hop 

2. We introduce a class of properties that can safely be 
checked at the end 

3. We wrote a set of TPC programs that check 
properties at the end, along with a discussion on the 
tradeoffs of hop-by-hop and last hop property 
checking 

II. RELATED WORK 
There has been extensive work in the area of 

static analyses for programmable networks and P4 
programs. P4Assert uses annotated assertions in P4 
programs to verify a model using symbolic execution 
[1]. This approach is able to quickly evaluate various p4 

applications to verify correctness and uncover bugs. P4v 
allows you to specify a control-plane interface that 
specifies the proper behavior of a P4 program [6]. 

These classes of static verification tools while 
helpful for catching bugs at compile time, cannot yet 
catch every possible set of bugs and furthermore are 
restricted to the level of the P4 program and cannot 
detect errors in the compiler, switch hardware, or tables 
filled in by the control plane at runtime. These static 
verification approaches are complementary to TPC and 
should be used alongside it for additional assurance.  

Runtime verification, on the other hand, can 
catch bugs, configuration mistakes, or malicious 
behaviors that stem from a number of sources during the 
execution of the P4 program on the network. However, 
there has not been a lot of work in this area. The 
following section will explain why TPC is novel 
compared to the literature that exists on runtime 
verification for SDN. 

P4Consist uses probe packets with special tags 
that collect telemetry data that are forwarded to 
dedicated servers that compare expected network 
behavior to the ground truth behavior from the probes. 
[5] However, the tags are only added to the special probe 
packets. Additionally, the verification happens offline, 
meaning inconsistencies cannot be detected at line rate 
as they occur. TPC checks for property violations on 
every single packet and the check is done on switch, 
rather than requiring a dedicated server. DBVal 
implements assertions in P4 that can verify runtime 
behavior in the dataplane, however it focuses network 
behavior on the execution of a single switch, while TPC 
can capture network-wide properties such as loops and 
slicing [1]. Thus, TPC introduces novel concepts in the 
area of runtime verification for programmable networks. 

 
III. THE TPC LANGUAGE 

Fig. 1. TPC program for end-to-end slicing 

 

bit<32> slice; 
 
for switch in path { 
    init { 
  if (%path_length == 1) 
            slice = @switch_slice; 
    } 
     
    checker { 
        if (slice != @switch_slice) { 
            reject; 
        } 
    } 
} 



The following is a brief overview on the 
semantics and syntax of the TPC language. Note, this 
work was done by Sundararajan Renganathan, advised 
by Nick McKeown at Stanford, in collaboration with 
Nate Foster’s research group at Cornell. TPC programs  
are compiled to P4 and linked with the P4 code that runs 
on the programmable switches in a network alongside 
the forwarding code. While TPC is still a specification 
language, it is written as a program in a scripting 
language. This style is more familiar to programmers 
than typical logical specifications frameworks such as 
Linear Temporal Logic. In addition to traditional types, 
expressions, and statements in imperative programming 
languages TPC has a few constructs that are specific to 
the language.  

It is easiest to understand TPC through an 
example. A simple property to illustrate the 
expressibility of TPC is end-to-end slicing. In network 
slicing, each switch is assigned a slice and a packet may 
only traverse switch’s allocated to the same slice. A 
common use case of this is VLAN isolation. 

Figure 1 is a TPC program that enforces slicing 
at each hop. The first thing to note is that at the top level, 
the program is written as a for loop that models the 
packet’s journey through each switch. At the first hop, 
the slice variable is set to the slice of the current switch. 
At each subsequent hop, this value is checked against 
the current slice of the switch. If any of them are not 
equal, the packet is rejected. The slice variable is called 
a checker variable, and has no annotation. This means 
the data is carried with the packet for verification. P4 has 
the ability to add in-band telemetry data to packets, 
which is one of the SDN features crucial for TPC and 
last hop checking. 

Forwarding variables are prepended with a %, 
such as %path_length, and correspond to the headers of 
the packet and metadata of the P4 program. Finally, 
static variables correspond to configuration data and 
information that is managed by the control plane, such 
as @switch_slice. As evident, they are written with an 
@ symbol. There is another type of variable called 
sensor data that is collected and aggregated by the 
switches, but is not useful for last hop checking.  

The init block is run at the start of the ingress 
pipeline, when the packet is first read in at the switch. 
The checker block is then run at the end of the egress 
pipeline, when the packet is about to be sent out. This 
allows them to capture different state, before the 
forwarding program is run on the switch. There is also 
an optional sensor{} block that can be used to keep track 
of state at a switch to be used over a flow of multiple 

packets, however it is not important for the discussion in 
this paper.  

 
Fig. 2. Model of TPC as a Runtime Monitor 

IV. TRACES AND PREDICATES 
While TPC has a domain specific language for 

easily encoding properties, at the highest level of 
abstraction it is a runtime monitoring system that 
collects traces on packets, comprised of network state as 
it traverses the network, and a predicate that runs on a 
trace and either halts the packet or allows it to be 
forwarded to the end host.  

In classical software runtime verification a 
runtime monitor is instrumented into a software system 
to observe the behavior and determine whether or not it 
violates a correctness specification [9]. More recent 
work on runtime monitoring for other application 
domains defines a useful abstraction for thinking about a 
runtime monitor. The monitor is instrumented into the 
system in such a way that it collects traces of the runtime 
execution. These traces can capture state at certain 
points, checkpoints, or often interactions with outside 
systems. In offline runtime verification, the entire trace 
is passed into a checker that verifies that certain 
predicates hold. In an online system, the predicates are 
run as the trace is collected. These predicates correspond 
to properties that the system administrator want to 
verify. This approach has been used in distributed 
systems, security applications, and even in hardware [8].   

To view the network verification problem as a 
classical runtime verification scheme, it is helpful to 
think of a network as one big switch. Packets enter the 
switch from a source end host and then are routed to 
their destination host. The details of the network are not 
important in this model. As can be seen in the model in 
figure 3, there is a monitor around the network that 
captures the state as packets traverse the network. This is 
analogous to how a runtime verification system would 
be instrumented to see the trace of a program as it 
executes. When the packet exits the network, before it is 
forwarded to the end host, the monitor checks that the 
trace passes a predicate. At the highest level, this is all 
that TPC does.  



The language was originally designed so that 
properties are checked at each hop of a packet’s journey. 
However, this runtime monitor abstraction does not 
specify where a predicate is run on a trace, only that it is 
either halted or allowed to continue before it reaches the 
end host. It is possible to reason about properties that 
could be checked only at the end of a packet’s journey, 
either in the leaf switch or a smart NIC aboard the 
endhost. Instead of checking the property at each switch, 
the necessary telemetry data could be forwarded along 
with the packet in the data plane and then it could be 
checked before it reaches the end-host either at the leaf 
switch or a smart NIC. By using the one big switch 
model, it is easy to reason about last hop checking in the 
same way as hop by hop checking – packets that violate 
a property are not delivered to the destination and 
instead are sent to the control plane. This is analogous to 
an offline check for runtime verification, where hop by 
hop can be seen as online.  

The TPC abstraction only specifies the trace to 
be collected and the predicate on the trace. Checking the 
predicate hop by hop or at the edge does not affect the 
property being checked. If you model the predicate as a 
state machine, S that operates on a trace T. S either 
enters a rejecting state and halts the packet or allows the 
packet to continue to its destination.  T contains a 
sequence of state (t!, t", t#, . . . , t$) the packet picks up 
as it traverses the network. In the edge check, thinking 
of the network as one big switch, the state machine 
would take in the trace once it has been fully collected 
and either forward the packet to the end host or reject it.  
By in-lining the check into the network, the state 
machine, including the transition function, does not 
change. The trace itself is also independent of where the 
check occurs. The only difference is that the state 
machine is distributed to different pieces of hardware 
and the transitions occur as the trace state becomes 
available, rather than at the end. Thus, these two 
approaches are equivalent. Another way to think about 
this is that one could have an offline verification system 
or an online monitor for the same, equivalent correctness 
specification. 

Where the check happens is flexible and up to 
the programmer. It is easy to visualize the check 
happening at the edge, as the packet is leaving the 
monitor, as in figure 3, however it can be in-lined into 
the network and distributed to switches inside, as seen in 
the program in figure 1. This has the advantage of 
immediately dropping packets as soon as TPC knows it 
will eventually be halted. There exists some total 
compiler that can translate the same equivalent program 
between edge checking and hop by hop checking by in-

lining the program into the network. This is considered 
future work for this paper.  

There is a class of properties that cannot be 
checked at the edge. The only case is when the packet 
does not reach the edge, as then the trace is lost, and the 
predicate cannot be checked. Such examples are if a 
packet is stuck in an infinite loop or if it is dropped in a 
black hole. In this case, other tools can be run alongside 
TPC (such as hop by hop checking for these violations), 
to ensure packets make it to the edge.  

 

 
 
Fig. 3. TPC program for last hop checking of slicing 

V. CHECKING PROPERTY VIOLATIONS 

A. Hop by Hop Checking 
As seen in the example in fig. 1, the for loop 

specifies that the initialization and checker block is run 
at each switch. This allows for the switch to keep track 
of the state of the network in memory as packets are 
forwarded through. Additionally, it means that if the 
checker finds a packet that has violated a property, it can 
immediately be dropped and sent to the control plane. 
This is the main advantage of the hop-by-hop checking 
approach. There are, however, a number of limitations. 
Due to the fixed number of pipeline stages in popular 
programmable switches, the entire TPC program might 
not fit on all pieces of hardware. Additionally, the 
network core often has little room for overhead and  
more congestion. Compared to edge switches and smart 
NICs, there is much less available compute.  

bit<32> slice1; 
bit<32> slice2; 
bit<32> slice3; 
bit<32> slice4; 
 
for switch in path { 
  init { 
      if (%path_length == 1){ 
        slice1 = @switch_slice; 
      } 
      if (%path_length == 2){ 
        slice2 = @switch_slice; 
      } 
      if (%path_length == 3){ 
        slice3 = @switch_slice; 
      } 
      if (%path_length == 4){ 
        slice4 = @switch_slice; 
      } 
  } 
  checker { 
      if (last_hop) { 
        if (slice1 & slice2 & slice3 & slice4 != slice1) { 
          reject; 
        } 
      } 
  } 
} 



B. Last Hop Checking 
It is possible to reason about properties that 

could be checked only at the end of a packet’s journey, 
either in the leaf switch or a smart NIC aboard the end 
host. Instead of checking the property at each switch, the 
necessary telemetry data could be forwarded along with 
the packet in the data plane and then it could be checked 
before it reaches the end-host either at the leaf switch or 
a smart NIC. By viewing the network core as one big 
switch, it is easy to reason about last hop checking in the 
same way as hop by hop checking – packets that violate 
a property are not delivered to the destination and 
instead of sent to the control plane. Additionally, some 
core switches may not have certain functionality. There 
could be restrictions on accessing stateful registers, 
depending on the hardware, and limited resources for 
adding new logic to the pipeline. 
 This approach significantly reduces overhead on 
network core switches and still acts as a runtime  
verification system that can check every packet as it 
traverses the network. It is semantically straightforward 
to convert a TPC program for a property from hop-by-
hop checking to last hop checking. There are 2 necessary 
pieces of information: 

• Telemetry data to keep track of  
• Predicate on the data to check for a violation 
Each switch along the path will forward the 

telemetry data and the final hop will do the checking. P4 
allows for a number of fields to be collected as packet 
telemetry. This includes packet headers, switch state 
such as table content, registers, queue lengths, and parser 
statistics. Any property that uses predicates on this data 
can be expressed as a last hop TPC program. Figure 2 is 
an example of a TPC program for last hop checking. For 
simplicity, it assumes each path is 4 hops. With compiler 
improvements, the trace would be modeled as a list and 
the predicate would be verifying that all the elements are 
the same (by the transitive property on the first element).  

The main difference is that instead of doing the 
check at each hop, the telemetry data is simply 
forwarded with the packet and then the check happens 
all at once at the end.  

Unfortunately, TPC does not currently support 
lists. We are working on compiler support for this 
feature. Thus, the code is not very elegant, but it will be 
greatly improved soon. 

As shown in the example, right now the only way to 
check for properties at the end is with a conditional in 
the checker block. However, this still requires the 
program to be compiled to every switch in the path. We 
plan on optimizing this by only compiling the required 

blocks to each switch, so only the leaf switches will 
include the checker.  

Below is a (non-exhaustive) list of properties that 
can be expressed in TPC and have been implemented as 
equivalent hop by hop and edge checking TPC 
programs. Each of the entries contains a property name, 
a description of the property, the trace to be collected, 
and the predicate on the trace. The form is as follows: 
v Property Name 

Ø Description 
Ø Telemetry Data 
Ø Predicate on Data for Rejection 

 
v Slicing 

Ø Each packet only traverses through the same 
slice 

Ø The slice of each switch in the path 
Ø Not all the slices are the same 

v General loop  
Ø No packet traverses the same switch twice 
Ø Each switch in the path 
Ø A switch is visited twice 

v VLAN Isolation 
Ø All packets traverse the same VLAN 
Ø The VLAN of each switch 
Ø Packet enters a different VLAN 

v Leaf Spine Invariant   
Ø First and Last hop of a packet’s path are leaf 

switches 
Ø The state of the first switch and last switch 
Ø First switch or last switch is not a leaf switch 

v Reachability 
Ø host s is reachable from host t 
Ø Reachability matrix from control plane and the 

end host 
Ø If host t is not reachable from the last hop 

v Isolation 
Ø Negation of Reachability 

v Waypointing 
Ø Packets sent from s can reach t, going through 

switch w 
Ø A Boolean value, whether the packet has gone 

through switch w 
Ø w is false 

v Egress port validity  
Ø Packets may only egress the network at allowed 

ports 
Ø Destination port of egress leaf switch and 

allowed ports from control plane 
Ø The destination port is not an allowed port 

v Path length validation 
Ø The length of the path is as expected 



Ø The number of switches in the path 
Ø The number of switches in the path is not the 

same as the expected distance 
v Path validation 

Ø The path taken by a packet is as expected 
Ø Each switch in the path 
Ø The path is not the same as the expected path 

VI. ENGINEERING TRADEOFFS 
Besides the set of properties that cannot be 

checked at the edge, the only differences between the two 
approaches are practical engineering tradeoffs. By giving 
network administrators the ability to choose how to 
implement their properties, TPC remains flexible to 
different network requirements.  

One of the biggest advantages of edge checking is 
that it allows for incremental deployment of TPC to 
networks. P4 programmable switches are expensive and are 
not commonly used in production networks. However, we 
are seeing more and more switches adding the capability to 
add in-band telemetry to packets. Checking at the edge 
allows for switches that cannot be arbitrarily programmed, 
yet can add telemetry to packets, to be verified by TPC. 
When the packet reaches the edges, either a programmable 
switch or more likely a smartNIC or even the end host 
kernel, can perform the property violation check. This one 
property of edge checking allows for a significantly higher 
number of networks to support TPC. As networks migrate 
towards deep programmability, it is important to add 
incremental support to tool that leverage it.  

Another point of tradeoff between the two 
approaches is telemetry overhead. The amount of telemetry 
overhead depends on the property. Certain properties, such 
as maximum hop length, only require a single integer to be 
carried along with the network. This integer can be thought 
of as mutable state that each switch updates as the packet 
traverses the network. However, other properties, such as 
ones that are dependent on each switch in the path (e.g. 
switch slice isolation), can require more telemetry. In this 
case, the amount of telemetry scales with the diameter of 
the network, as each switch adds 4 bytes to the list of 
switch slices. This list can be thought of as an immutable 
local variable that each switch appends data to. For this 
property, checking hop by hop only requires 4 bytes total, 
while checking at the edge requires 4 bytes per switch. 
Often, especially if the computation is simple, it is better to 
perform it on each switch rather than carrying significantly 
more telemetry. However, it is convenient, when a switch 
doesn’t support deep programmability, to be able to append 
the data to the packet to be processed later.  

The network core is highly congested, responsible 
for forwarding all packets to their destination. Especially in 
modern networks, a little bit of overhead can be the 
difference between line rate forwarding and significantly 

slower throughput. In fact, the P4 compiler will not even 
allow you to install a program if it uses more pipeline space 
than is available. Thus, to realistically support TPC, it is 
important to have flexibility in where the computation 
takes place. By moving the computation from the switches 
in the core that highly congested and sensitive to small 
overheads, to the switches or smartNICs at the edge that 
have more available compute and often more capabilities 
for programmability, edge checking is easier to support; in 
some networks it might be the only option.  

Finally, checking hop by hop has the benefit that 
packets are halted as soon as it violates the property. If you 
know a packet will eventually be dropped instead of 
forwarded to its destination end host, it clearly reduces 
strain on the network to drop it immediately rather than 
allowing it to add to the congestion of the network and 
must be processed at every subsequent switch. Edge 
checking guarantees the same level of correctness, but the 
packet will necessarily travel to the edge before it is 
dropped.    

Qualitatively, there are significant differences 
between writing programs for the edge and hop by hop. 
In our experience, it is easier to reason about the 
behavior of a TPC program that specifies the telemetry 
to add to a packet and a predicate on the telemetry. This 
is especially the case when designing the language to 
support list constructs and comprehensions on lists. 
Additionally, this style of programming is more 
conducive to the high level abstraction of viewing a TPC 
program as a trace and a predicate on a trace. Thus, the 
lists specify the trace (i.e. the state collected at each 
switch) and the list comprehensions specify a predicate 
on the trace. Meanwhile, it can be tricky to reason about 
the behavior of a program that is running the check at 
each hop, as the predicate is working on a partial trace 
and is thus a “partial” check.  

When designing the compiler, the edge check 
has a full view of the trace, while the hop by hop 
checker only performs “partial” checks on partial traces. 
Thus, a program written in the edge check format (i.e. 
specifying a trace and a predicate on the trace) could be 
easily optimized to be compiled to different P4 programs 
to be run only on the necessary switches, introducing the 
least amount of overhead, while a hop by hop program 
might have to be manually written separately for each 
switch. This is because the hop by hop program 
semantically specifies the behavior of a single switch on 
the partial trace it has so far, rather than the entire trace 
available at the edge.  

The language design itself only serves to make it 
easy for a programmer to share their intent with the 
system and to make it easy for the system to compile the 
program to the switches. It is important to note that 



independently of the language design, the TPC program 
should be able to run as a hop by hop check or as an 
edge check. This qualitative experience only serves to 
show that it appears easier to specify programs as edge 
checks and to translate them to hop by hop programs as 
needed than to specify programs as hop by hop programs 
and translate them to edge checks.  
 

VII.  CONCLUSION 
The emergence of software defined networking 

enables innovation in ways that hasn’t been seen before, 
but also comes with new surface area for vulnerabilities 
and bugs in the P4 compiler, P4 programs, control plane, 
and hardware. Tiny Packet Checkers is an approach that 
leverages these new programmable networks to check 
the correctness of every packet at runtime as it traverses 
the network. In this paper, we have introduced a high 
level abstraction for TPC that is independent of where 
the check happens. We have also shown the equivalence 
of checking at each hop and at the edge, along with 
example properties and a discussion of the practical 
engineering tradeoffs of each approach. Checking at the 
edge enables incremental deployment and reduces strain 
on the network core, but leads to higher telemetry 
overheads and does not halt packets as soon as they 
violate the correctness specification. Ultimately, the 
ability to switch between different methods for checking 
properties allows for flexibility in how operators run 
TPC programs.  

 

VIII. FUTURE WORK 
There are numerous directions to go for future 

research. Verification for programmable networks, and 
even software define networking as a whole is an 
emerging field that requires a lot of work before it 
comes feasible or cost effective. The first direction for 
future work is to make improvements to the compiler 
and add language support for checking at the edge. The 
most important feature is to add list support so that 
traces can be modeled as lists, that can be arbitrarily 
long, depending on how many hops.   

Another nice feature would be a total compiler 
that can translate between equivalent hop by hop and 
edge checking programs. This would give flexibility to 
operators on how they want to run TPC, depending on 
what their network topology looks like and how much 
support they have for P4 programmability. Together 
with this is a compiler that can compile a program to 
different switches, depending on the topology. This 
would reduce the overhead on all switches, except for 

the necessary ones. For example in waypointing, the 
waypoint switch is the only one in the network that 
really needs to add any state to the trace.  

Finally, we are working on a testing framework 
for TPC. This either requires a test network with 
programmable switches, which is costly and difficult to 
setup, or a simulation framework which is a project in 
and of itself to deploy. For these reasons, there has not 
been a full scale experiment or testing of the different 
approaches to running TPC, however this is currently 
being worked on. These results would allow us to 
quantitatively compare the effectiveness of hop by hop 
checking and edge checking with different properties 
and network topologies. 
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